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The stereoselectivity and turnover frequency (rate) of asym-
metric catalysis with chiral metal complexes are significantly
affected by the nature of the donor compounds present in the
reaction mixture, resulting in various nonlinear phenomena.1-3

Certain racemic metal complexes can catalyze an enantioselective
transformation in the presence of a nonracemic auxiliary, when
one of the catalyst enantiomers is selectively activated4 or
deactivated.5 The recently developed RuCl2(diphosphine)Sn/1,2-
diamine/alkaline base ternary catalyst system effects practical
hydrogenation of a diverse array of nonfunctionalized ketones.6

The reaction with mild conditions (1 to 8 atm) exhibits high CdO/
CdC selectivity and excellent diastereo- and enantioselectivity.
Here if one can use a racemic diphosphine ligand for asymmetric
hydrogenation, the synthetic utility will be further increased. We
now have realized asymmetric activation of racemic diphosphine-
Ru(II) complexes using a nonracemic 1,2-diamine.
RuCl2(tolbinap)(dmf)n,7,8 either racemic or enantio-pure, is a

feeble catalyst for hydrogenation of simple ketones. However,
when 2,4,4-trimethyl-2-cyclohexenone (1) was hydrogenated in

the presence of racemic RuCl2(tolbinap)(dmf)n, (S,S)-1,2-diphe-
nylethylenediamine [(S,S)-DPEN],9 and KOH in a 7:1 mixture
of 2-propanol and toluene ([1] ) 0.6 M, ketone:Ru:diamine:KOH
molar ratio) 500:1:1:2, 8 atm, 0°C, 6 h), the allylic alcohol
(S)-2 was produced in 95% ee in 100% yield (eq 1).10,11 The

enantiomeric purity was very close to the 96% ee attainable with
a combination employing enantiomerically pure (R)-TolBINAP
and (S,S)-DPEN. The (R)-diphosphine/(R,R)-diamine combina-
tion (1:1 molar ratio) catalyzed the reaction slowly to give (S)-2
in only 26% ee. As illustrated in Figure 1, the rate of
hydrogenation with the (()-TolBINAP-Ru complex was en-
hanced with an increase in the amount of (S,S)-DPEN, reaching
a near maximum value with the addition of a 1.0 molar amount
of the diamine. On the other hand, the ee value of the product
was consistently high (>90%) from the beginning (diamine/Ru
> 0.25). Thus, (S,S)-DPEN was shown to more effectively
activate the (R)-TolBINAP-Ru isomer of the racemate under the
hydrogenation conditions employed.
A mixed-ligand catalyst was prepared from equimolar amounts

of the (()-TolBINAP-Ru complex and (S,S)-DPEN, and this
was followed by the addition of an equimolar amount of (R,R)-
DPEN. The system contains equal amounts of enantiomers for
both diphosphine and diamine (diphosphine:diamine) 1:2).
Nevertheless, this mixture catalyzed hydrogenation of1 in a
2-propanol-toluene solution containing KOH (8 atm, 14 h)
affording (S)-2 in 91% ee and 100% yield, in which the inherent
stereoselectivity of the (R)-TolBINAP/(S,S)-DPEN combination
was preserved. This result indicates that the interaction of the
RuCl2(diphosphine) complex and DPEN is virtually irreversible.
In fact, a complex prepared from RuCl2[(R)-tolbinap](dmf)n and
(S,S)-DPEN (1:1) in a 1:7 (CD3)2CDOD-C6D5CD3 mixture gave
a single31P-NMR signal atδ 45.8 ppm (10% H3PO4 as external
standard), while theS/S,Sligand combination gave a signal atδ
46.2 ppm. A 1:0.5 to 1:2 mixture of RuCl2[(()-tolbinap](dmf)n
and (S,S)-DPEN showed these signals with equal intensities.
Hydrogenation of 9-acetylanthracene with the (()-TolBINAP/

(S,S)-DPEN combined system (0.9 M, ketone:Ru:diamine:KOH
) 250:1:1:2, 8 atm, 80°C, 10 h) gave (R)-1-(9-anthryl)ethanol
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in 80% ee in 99% yield. The ee value was comparable with the
82% accessible with the pureR/S,Scombination.
Wheno-methylacetophenone (3) was used as substrate, (S,S)-

DPEN enhanced the activity of the (S)-TolBINAP-Ru complex
more than that of the (R)-TolBINAP-based isomer. The hydro-
genation in the presence of RuCl2[(()-tolbinap](dmf)n, (S,S)-
DPEN, and KOC(CH3)3 in a 7:1 mixture of 2-propanol and
toluene (0.6 M, ketone:Ru:diamine:base) 500:1:1:2, 4 atm, 0
°C, 10 h) gave (R)-4 quantitatively and in 90% ee (eq 2). Separate

experiments revealed that an enantiomerically pure complex,
RuCl2[(S)-tolbinap](dmf)n, coupled with (S,S)-DPEN, catalyzes
hydrogenation of3 giving (R)-4 in 97.5% ee and that the reaction
with (R,R)-DPEN affords (R)-4 in only 8% ee. Hydrogenation
of 1′-acetonaphthone with the (()-TolBINAP/(S,S)-DPEN system
(0.6 M, ketone:Ru:diamine:KOH) 500:1:1:2, 4 atm, 0°C, 6 h)
gave (R)-1-(1-naphthyl)ethanol with 76% ee in 100% yield. The
Ralcohol is obtainable in 97% ee with the (S)-diphosphine/(S,S)-
diamine combination.6a

Scheme 1 provides the simplest explanation for the observed
asymmetric activation of the racemic Ru complex with (S,S)-
DPEN. The enantioselectivity of hydrogenation reflects the
relative turnover numbers of the competingR/S,Sand S/S,S
catalytic cycles, and the ratio is determined by the relative
concentrations and reactivities of the coexisting diastereomeric
diphosphine/diamine Ru catalysts.1,12,13 The TolBINAP-Ru
dichloride existing as aggregates8 is feeble for hydrogenation of
simple ketones. Under the reaction conditions, the labile ligands
(S) are readily displaced by (S,S)-DPEN to form a monomeric

diphosphine/diamine complex.14 This equilibrium lies far to the
mixed-ligand complex regardless of the chirality of the ligands.
The real hydrogenation catalyst is probably the chiral Ru mono-
or dihydride formed from the dichloride, alkaline base, and
2-propanol and/or hydrogen.15,16 The rate and stereoselectivity
including the sense of asymmetric induction achieved with these
diastereomeric catalysts are highly dependent on the structures
of ketonic substrates. During hydrogenation of the cyclohexenone
1 (eq 1), theR/S,S cycle with anS:R enantioselectivity of 98:2
occurs 121 times faster than theS/S,Scycle which has anS:R
ratio of 37:63. On the other hand, with the aromatic ketone3 as
substrate (eq 2), theS/S,Scycle, which displays anS:R enanti-
oselectivity of 1.3:98.7, turns over 13 times faster than does the
diastereomericR/S,Scycle with anS:R ratio of 54:46.
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Figure 1. Asymmetric activation of a racemic TolBINAP-Ru complex
with (S,S)-DPEN in the hydrogenation of1 (1:Ru:KOH ) 500:1:10, 8
atm, 28°C).

Scheme 1.Mechanism of Asymmetric Activation
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